【
仪表网 仪表研发】传统半导体p-n异质结是双极型晶体管和场效应晶体管的核心结构,是现代集成电路技术的基础。同样,构建石墨烯p-n异质结也是未来发展基于石墨烯的集成电路和光电探测技术的关键。
由于石墨烯材料单原子层厚度的限制,难以通过传统集成电路制造工艺中的离子注入技术,实现石墨烯材料的可控掺杂。另外,原位生长掺杂、化学修饰掺杂等技术又难以实现p-n异质结所需的选区掺杂。因此,实现石墨烯可控性掺杂(掺杂种类、浓度和区域),进而构建高质量石墨烯p-n异质结阵列存在挑战。
中科院上海微系统所信息功能材料国家重点实验室硅基材料与应用课题组,在高质量水平石墨烯p-n异质结的阵列制备及其光电探测方面取得重要进展。狄增峰、王刚等研究人员结合离子注入技术和化学气相沉积(CVD)技术,利用“异质原子成核-促进石墨烯再生长”两步动力学路径制备出掺杂石墨烯材料。
通过控制注入离子的种类和剂量,实现了具有掺杂浓度的n型和p型石墨烯;通过选区注入,在同一基底的相邻区域内分步注入n型掺杂离子和p型掺杂离子,成功构建出水平石墨烯p-n异质结阵列。石墨烯p-n异质结阵列具有优异的光电探测性能,其响应度达到1.4~4.7 AW-1,探测率达到~1012 cmHz1/2W-1。这一研究为研制低成本、大规模、率石墨烯光电探测器提供了一种解决方案,有望促进石墨烯材料在光电探测领域的规模化应用。
相关研究成果以“Seamless lateral graphene p-n junctions formed by selective in situ doping for high-performance photodetectors”为题于2018年12月5日发表在Nature Communications上(Nature Communications, 9, 5168 (2018))。
该工作得到国家科技重大专项、国家自然科学基金、中国科学院前沿科学重点研究项目、中科院战略性先导科技专项、上海市学术/技术带头人计划等相关研究计划的支持。
(原文标题:上海微系统所在水平石墨烯p-n异质结阵列构建及其光电探测研究方面取得重要进展)